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Abstract 

The quantification and analysis of molecular similarity are fundamental problems 
of both theoretical and applied chemistry. The continuum similarity problem of planar 
domains with Jordan curve boundaries can be discretized and quantified using interior 
filling animals (square cell configurations). A similar approach is applicable to the 
continuum similarity problem of formal molecular bodies enclosed by contour surfaces, 
where interior filling polycubes provide a method for discretization and quantification 
of molecular similarity in three dimensions. This technique leads to resolution based 
similarity measures (RBSMs), suitable for automatic, non-visual evaluation of the degree 
of similarity between shapes of general objects, in particular, of molecular charge 
distributions, or fused sphere Van der Waals surfaces. Using the framework of the 
RBSM method, the polycube method of chirality quantification is extended to the 
quantification of approximate symmetry of molecular electron distributions. 

1. Introduction 

Square-cell configurations on a planar square lattice (often called lattice 
animals, or simply animals, if some constraints are satisfied), as well as polycubes 
of a three-dimensional cubic lattice provide very useful, simple models for the 
characterization of physical objects and processes [1-8].  In this study, we shall 
describe some results involving lattice animals and polycubes which are of relevance 
to the study of molecular similarity. 

Similarity of structural properties, in particular, the similarity of shapes of 
electron distributions of various molecules, has often been invoked in explaining 
similar chemical or biochemical behavior [9]. Yet, no standard convention exists 
for the evaluation of similarity of shapes. In applications, such as drug design, the 
usual approach involves a visual evaluation of similarity of molecular images generated 
on a computer screen. Such techniques, however, appear both subjective and not 
well reproducible; consequently, alternative techniques such as non-visual, algorithmic 
methods for similarity evaluation are likely to become more useful in applications 
where reproducibility and reliability are of importance. In an earlier work, a conceptually 
simple method has been proposed for the evaluation of a numerical measure of 
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similarity of formal molecular bodies, using the principle of resolution based similarity 
measures (RBSMs) designed to mimic certain aspects of  visual perception on a 
computer [10]. In what follows below, we shall briefly review the background of 
the RBSM method, which is the basis of the developments discussed in this work. 

The basic idea behind this method is very simple. When two objects of 
different shapes are observed at a great distance, they are likely to appear nearly 
identical, as two distant points. At a smaller distance, their shape differences may 
become apparent, and at a close distance their differences are well established. 
Observations at great and small distances may be regarded as observations at low 
and high resolution, respectively. Clearly, the more similar the two objects the 
higher the resolution needed to detect differences. Hence, a numerical similarity 
index can be associated with the level of resolution required for the detection of  
shape differences, leading to resolution-based similarity measures. 

Instead of evaluating the shape differences of the original objects directly, 
one may consider discrete approximations of the objects. For example, one may use 
inscribed polycubes in order to provide such discrete approximations [10]. By 
polycube, we mean a face-connected family of cubes within the three-dimensional 
cubic lattice, fulfilling some additional constraints [10]. An interior filling polycube 
is one which fits within the object but no polycube of the same cube size and of  
more cubes fits within the object. One may use the methods of discrete mathematics 
to evaluate the similarities of the families of polycubes inscribed into the objects. 
Hence, the similarity problem of two continua (the two objects) can be approximately 
represented by a similarity problem of two polycubes with discrete characterization. 

Note that we do not distinguish between rotated and translated versions of 
a polycube, and between versions which differ only in size: any two polycubes Pn 
and P" of n cubes which can be superimposed on one another by scaling, translation, 
and rotation in 3D space are regarded as identical, Pn = P,~. Consequently, when 
comparing two polycubes, only the relative, topological arrangements of their cubes 
are relevant. Since for a finite number of cubes there are only a finite number of  
topologically distinct cube arrangements, polycubes do, indeed, provide a discretized 
approximation to the shape description of the original objects. 

When using interior filling polycubes, a natural, size-independent level of 
resolution can be associated with the number of cubes of the inscribed polycube. If 
the resolution is low, then only a rough approximation of  the object is given by a 
polycube containing only a few cubes; if the resolution is high, then a close approximation 
of the object is given by an interior filling polycube of  a large number of cubes. A 
size-independent shape-similarity measure is obtained if both small and large objects 
are described by the same number of cubes, and the corresponding interior filling 
polycubes are compared. For this purpose, each level of resolution is defined by n, 
the number of cubes of interior filling polycubes, which, of course, depends on the 
relative size of the objects as compared to the cube size s. 

The shape of  a molecule with a formal, fixed nuclear geometry K may be 
represented by isodensity contours. Following the notations of ref. [10], G(a) and 
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B(a) denote the isodensity contour surface and the formal molecular body 
enclosed by it, respectively, if the electronic density value along the contour is the 
constant a. The ith n-cube interior filling polycube of G(a) is denoted by Pi(G(a), n). 

Consider two contour surfaces, G1 and G2 of two different molecules, or of  
the same molecule at two different density values al and a2, and denote by F(G1, G2, n) 
the family of common n-cube interior filling polycubes Pi(G1, n) and/)(G2,  n). The 
similarity index io(G1, G2), the degree of  dissimilarity d(G:, G2), and the degree of 
similarity s(G1, G2) of the two contour surfaces G1 and G2 have been defined [10] 
as follows. 

The similarity index io(G~, G2) is the smallest nc value at and above which 
all interior filling polycubes of contour surfaces G1 and G2 are different: 

/o(G1,G2) = { min{nc'~ F(GI,G2,n) is empty i fn  > no}, if the minimum exists, 
(1) 

otherwise. 

If two contour surfaces G1 and G2 can be obtained from one another by translation, 
rotation, and scaling, then their shapes are identical; for G1 and G2 of identical 
shapes, no finite nc value exists and io(G1, G2) = o o .  

The degree of dissimilarity d(G1, G2) is defined as 

d(G1,G2) = 1/(io(G:,G2) - 2). (2) 

For both cube numbers n = 1 and n = 2, the polycubes are unique and on these 
levels of  resolution no dissimilarity exists; hence, io(G1, G2) > 2 is always valid. 
This is why the number two appears in the denominator; d(G~, G2) takes values 
from the [0, 1] interval. 

The degree of similarity s(G1, G2) of two contour surfaces G1 and G 2 is 
defined as 

s(G1, G2) = 1 - d(G1, G2). (3) 

If the two contour surfaces G1 and G 2 have identical shapes, then their degree of 
similarity s(G1, G2) = 1, otherwise s(G~, G2) is a smaller positive number. 

Although for molecular shape analysis the three-dimensional case is of the 
most relevance, the two-dimensional case of shape characterization of planar continua 
is of  special importance. Hence, we shall describe the analogous methods involving 
lattice animals. By contrast to earlier studies on similarity [10], as well as on 
chirality [11, 12], here we shall not restrict ourselves to simply connected planar 
domains; multiply connected square cell configurations will also be regarded as 
formal lattice animals. We shall have the following requirements: 

A lattice animal A is a connected arrangement of a finite number n of impenetrable 
squares c (called cells) of uniform size s in the plane, if 

(i) only two types of contacts between cells are allowed: a common edge or a 
common vertex; 
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(ii) if n > 1, then each cell of  the animal A must have an edge contact with 
another cell of A; 

(iii) if there is a vertex contact between two cells c and c" of A, then there must 
also be either an edge contact between them or there must exist a cell c" with 
edge contact to both c and c';  

(iv) the animal, as a planar set, is topologically equivalent to the planar continuum 
it represents. In the most common case, this continuum is topologically equivalent 
to a disk; however, more complicated topologies are also of importance. 

An n-cell interior filling animal Ai(C, n) of a planar continuum T with a 
boundary C of finite length is an animal which fits within C, but no animal of the 
same cell size s and more that n cells can be inscribed in C. Note that this definition 
is broader than that used in earlier studies [10-12], where no multiply connected 
square-cell configurations were considered and requirement (iv) was not specified. 

Consider two planar sets 7"1 and T2, their boundaries C1 and C2, respectively, 
and denote by F(C1, C2, n) the family of common n-cell interior filling animals 
Ai(C1, n) and Aj(C2, n). Following the definition in ref. [10] for the simpler case, 
the similarity index i0(C1, C2), the degree of d&similarity d(C1, C2), and the degree 
of similarity s(C1, C2) of the two planar sets C1 and C2 can be defined as follows: 

The similarity index io(C1, C2) is the smallest nc value at and above which 
all interior filling animals of the planar set with boundaries C1 and C2 are different: 

f min{nc: F(CI,C2,n) is empty if n > no}, ifthe minimum exists, 
/o(C1, C2) (4) 

otherwise. 

If two boundaries C1 and C2 can be obtained from one another by translation, 
rotation, and scaling, then their shapes are regarded as identical. For C1 and C2 of 
identical shapes, no finite nc value exists and we obtain io(C1, C2) = oo. 

We define the degree of dissimilarity d(C1, C2) as 

d(C1, C2) = 1/(io(C1, C2) - 2). (5) 

This is similar to the three-dimensional case, since for both cell numbers n = 1 and 
n = 2 the animals are unique; hence, on these levels of resolution, no dissimilarity 
may exist. This fact is taken into account by the inclusion of the number two in the 
denominator; d(C1, C2) takes values from the [0, 1] interval. 

The degree of similarity s(C1, C2) of two boundary lines C1 and C2 is defined 
as 

s(C1, C2) = 1 - d(C1, C2). (6) 

If the two boundary lines C1 and C2 have identical shapes, then their degree of 
similarity s(C1, C2) = 1, otherwise s(C1, C2) is a smaller positive number. 

The detection of the presence or the lack of chirality is also resolution dependent. 
Although chirality is an absolute property, this resolution dependence allows one 
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to introduce a formal scale for chirality. Clearly, if chirality is already detectable 
at a low level of  resolution, one may regard the object "more chiral" than another 
object that reveals its chirality only at a much higher level of  resolution. For both 
the two- and three-dimensional  cases of  chirality, a formal degree of  chirality has 
been introduced [11,12] based on a discretization of  shape features using lattice 
animals and polycubes.  Following the original definit ion given for interiors of  
Jordan curves in the plane [11], here we shall give a definit ion for a more general 
boundary line C in the plane. This definition is based on chiral animals. 

An animal A is achiral if and only if A can be super imposed on its mirror 
image A ° by translation and rotation within the plane: 

A = A °. (7) 

Otherwise, the animal A is chiral. 
For each boundary C, we shall consider a chirality index, defined as a critical 

cell number  n~(C), at and above which all interior filling animals Ai(C, n) are 
chiral. 

We say that C is chiral at and above cell number  n x if each Ai(C, n) is chiral 
if n >_ n~. The chirality index nz(C ) is the smallest n~ value above which all interior 
filling animals Ai(C, n) are chiral, 

nz (C)  = ( min{nz:oo Ai(C,n) is chiral i fn  > n~}, if the minimum exists, 

otherwise. (8) 

Since the smallest chiral lattice animals have four cells [11], the min imum possible 
value for the chirality index is nx(J) = 4. The degree ofchirality x(C) of a boundary 
curve C of  a planar continuum T is defined as 

x(C) = 1 / (n x (C) - 3). (9) 

This measure of  chirality gives the value 1 for "very chiral" curves and 0 for achiral 
ones. 

A similar treatment has been applied for the three-dimensional  case [12]. A 
polycube P,, is achiral if and only if Pn can be superimposed on its mirror  image 
p0 by translation and rotation: 

en=e°n. (10) 

Otherwise,  the polycube Pn is chiral. 
An isodensity contour surface G(a) is chiral at and above cube number  n z 

if each interior filling polycube Pn(G(a)) is chiral if n >- n z. The chirality index 
nz(G(a)) is the smallest  n x value above which all interior filling polycubes Pn(G(a)) 
are chiral: 

min {n~" Pn(G(a)) is chiral if n >_ nx), if the minimum exists, (11) 
n% (G(a)) = oo otherwise. 



32 P.G. Mezey, Two- and three-dimensional similarity analysis 

The degree of chirality %(G(a)) of a molecular contour surface G(a) is 

%(G(a)) = 1 / (n~(G(a)) - 3). (12) 

The smallest chiral polycube has four cubes, and the number three in the 
denominator ensures that the degree of chirality is a number from the [0, 1] interval. 

The above resolution based chirality measures using interior filling lattice 
animals [11] and polycubes [12] may be regarded as extensions of the general 
RBSM principle [10]. They also provide alternatives to 

(i) earlier chirality measures based on area and overlap, described by Kitaigorodskii, 
Gilat, Schulman, Mislow, Buda, and Auf der Heyde [13-19]; 

(ii) descriptions in terms of reference objects using the Haussdorf distance of 
point sets for characterization by Rassat [20]; 

(iii) fuzzy set representation [21] of chirality, using fuzziness in an epistemological 
sense by Mislow and Bickart [22]; and to 

(iv) the principle of energy-weighted fuzzy achirality resemblance of Mezey [12], 
based on the syntopy model developed by Mezey and Maruani [23]. 

2. Chirality measures based on the degree of similarity 

The RBSM method is applicable for the introduction of two new approaches 
towards the quantification of chirality. The first such approach is based on the 
degree of similarity s(G, G °) or s(C, C °) between the object G or C and its mirror 
image G o or C o , in the three- or two-dimensional cases, respectively. 

The similarity based measures o~,(G) and c~s(C) of achirality are defined as 

and 
o~,(G) = 2 s(G, G °) - 1 

oq(C) = 2 s(C, C °) - 1, 

(13) 

(14) 

respectively. Note that in the general case, the smallest possible value of both the 
two- and three-dimensional similarity indices is 3. However, for mirror images, the 
smallest possible value for both similarity indices is 4, obtained for the enantiomeric 
pair of one of the smallest chiral animals (called "Tippy", see, e.g. ref. [11]), and 
for the enantiomeric pair of the smallest chiral polycube, respectively. Consequently, 
a rescaling of the s(G, G °) and s(C, C °) measures is required, as given in eqs. (13) 
and (14). The coefficient 2 and the term -1  in the above expressions ensure that 
these achirality measures are taking values from the [0, 1] interval. Objects which 
are "fully achiral", that is, objects which appear achiral at any level n > 4 of resolution, 
have an achirality measure of c~s = 1, whereas objects showing the greatest dissimilarity 
with their mirror images have an achirality measure of ~s = 0. 
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In turn, the similarity based measures %s(G) and )cs(C) ofchirality are defined 
as  

%s(G) = 1 - (xs(G) (15) 

and 
•s(C) = 1 - as(C), (16) 

respectively. Objects with prominent chirality have %s measures close to 1, whereas 
achiral objects have a %s measure equal to 0. 

In an indirect way, the above similarity based measures of  chirality rely on 
a reference to animals and polycubes of maximal chirality by the earlier criterion, 
since these are the same animals of  polycubes having maximum chirality of 1 by 
the new measure. The two chiral four-cell animals are A' = "Tippy" and A" = "Elly", 
both o f a  2 x 3 mesh and of  binary codes c(Tippy) = 110011 and c(Elly) = 111100, 
respectively [24]. (We recall that the specification of the mesh and the binary code 
provides a complete characterization of animals [24].) Note that Elly, A" has achiral 
interior filling animals of  more than four cells, as opposed to Tippy, A', which has 
not. Consequently, according to our definition, Tippy, A' is more chiral than Elly, 
and we shall not use Elly as a reference. The smallest chiral polycube is the four- 
cube screw P~, where the four cubes are arranged as in condition (ii) of  ref. [12]. 

This measure of  chirality is different from the earlier measure [11, 12]. It is 
possible that for some curve C only chiral interior filling animals occur at some 
level nc and above, yet the same chiral interior filling animal A of nc cells and its 
mirror image A ° may occur for both C and its mirror image C °. Hence, at this level, 
the test of  full dissimilarity fails, whereas the earlier test of  chirality already gives 
n x < nc. In such a case, the new measure provides more discrimination than the 
earlier one [ 11 ]. 

The testing of  interior filling animals and the determination of  suitable upper 
bounds nc and n x for the calculation of similarity and chirality indices and the 
respective measures involve several computational steps discussed in the appendix. 
It is possible, however, to choose a given level or a given, limited range of resolution, 
suitable for the chemical problem at hand, that leads to resolution-dependent similarity 
and chirality measures. These measures are discussed in section 3. 

3. Similarity and chirality measures for limited resolutions 

Considering both limited and infinite resolutions, an interesting connection 
can be established between the discretized, lattice animal and polycube measures 
of  chirality and the measures based on the overlapping area and volume of mirror 
images, developed by Kitaigorodskii, Gilat, Shulman, Mislow, Buda, and Auf  der 
Heyde [13-19] .  In the 2D case, we first consider a fixed number n of  cells, a 
boundary C, its mirror image C o and another boundary C'. At level n of  resolution, 
we define two quantities: 
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d(C, C', n) = the minimum number of cells needed to move in 
order to turn an interior filling animal Ai(C, n) of 
C into an interior filling animal Aj(C', n) of C',  

k(C, n) = the minimum number of cells needed to move in 
order to turn an interior filling animal Ai(C, n) of 
C into an achiral animal. 

(17) 

(18) 

A resolution-dependent dissimilarity measure is given by 

D(C, C', n) = d(C, C', n)/n, 

and two resolution-dependent chirality measures are 

(19) 

and 
K(C, n) = k(C, n)/n 

K(C, C °, n) = D(C, C °, n). 

(20) 

(21) 

Note that if either C or C '  has no n-cell interior filling animal, then neither 
d(C, C', n) nor D(C, C', n) is defined. If C has no n-cell interior filling animal, then 
no quantities k(C, n), K(C, n) and K(C, C °, n) are defined. 

In the limit of  large n, K(C, C °, n) converges to the ratio of the area of  the 
part of the interior of C not covered by the interior of C °, and the area of  the interior 
of  C, assuming maximal overlap between C and C °. Let us denote the area of  a set 
of  boundary C by a(C), and the area of maximum area intersection of the interiors 
of  C and C" by a(C ^ C'). Then, 

lim K(C, C °, n)  = (a(C)- a(C ̂  C °)) / a(C). 
l l  --.-) o o  

(22) 

It is easily seen that this limit is equal to the overlap measure 2(T) of chirality as 
used by Mislow et al. [16-19]:  

lim K(C, C °, n)=  2(T), (23) 
n - " + ~  

with T = T(C), the planar set of boundary C. 
Consider two n-cell animals A 1 and A2. Their distance is defined as 

d(A1, A2) = the minimum number of cells of A1 must be moved 
in order to turn A1 into A2. (24) 

Clearly, 

d(A1, A2) = d(A 2, A1). (25) 

If (but not only if) both C and C '  have only one n-cell interior filling animal 
each, AI(C, n) and AI(C', n), respectively, then 
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d(C, C', n) = d(A1(C, n), AI(C', n)), 
and 

D(C, C', n) = d(AI(C, n), A:(C', n))/n. 

Furthermore, if  C ' =  C °, then 

(26) 

(27) 

K(C, C °, n) = d(AI(C, n), AI(C °, n))/n = d(Al(C, n), A~(C, n))/n. (28) 

For an n-cell animal A, we define 

k(A) = the minimum number of  cells must be moved in order to 
turn A into an achiral animal. (29) 

and 

If (but not only if) C has only one interior filling animal AI(C, n), then 

k(C, n) = k(AI(C, n)) (30) 

K(C, n) = k(AI(C, n))/n. (31) 

Consider two animals A 1 and A2, of  nl and n 2 cells, respectively. Without loss 
of  generality, we may assume that nl < n2. A common parasite animal 

P(A1, a2) (32) 

of  AI and A 2 is an animal that is contained in both AI and A 2, whereas a common 
host animal 

H(A :, A2) (33) 

Of Al and A2 is an animal that contains both A1 and A2. A maximal common parasite 
animal 

Pm(A 1, A2) (34) 

o fA  1 and A 2 is a parasite of  A1 and A 2 of  largest number of cells, whereas a minimal 
common host animal 

Hm(A 1, A 2) (35) 

of  A: and A 2 is a host of  A1 and A 2 of  smallest number of  cells. 
The shrinking coincidence index 

sc(A1, A2) = n 2 - n(Pm(A1, A2)) (36) 

of  A 1 and A 2 is the difference between the cell numbers of  the larger of the two 
animals and a maximal parasite. Intuitively, if both animals are losing cells, then 
the shrinking coincidence index is the minimum number of  cells the larger animal 
must lose before it can become a parasite common for both animals. 
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The growing coincidence index 

gc(A1, A2) = n(nm(Al, A2)) - n 1 (37) 

of  A1 and A2 is the difference between the cell numbers of a minimal host and the 
smaller of  the two animals. Intuitively, if both animals are growing cells, then the 
growing coincidence index is the minimum number of  cells the smaller animal must 
grow before it can become a host common to both animals. 

The above two indices define two additional measures of  chirality of  animals. 
The first of  these is based on the minimum number of  cells that need to be removed 
in order to turn an animal A into an achiral animal. This measure is given as 

~sc(A) = sc(A, A°)/n. (38) 

The second measure is based on the minimum number of  cells that need to be added 
in order to turn an animal A into an achiral animal. This measure is given as 

)Cgc(A) = gc(A, A°)/n. (39) 

All definitions and results of  this section can be generalized for the three- 
dimensional case of  polycubes, or for the case of abstract v-dimensional hypercubes, 
by replacing the terms and symbols of  animal, A, boundary, C, and cell with 
polycube, P, contour surface, G, and cube, or with polyhypercube, P, contour 
hypersurface, G, and hypercube, respectively. 

4. Resolution based symmetry deficiency measures 

Chirality can be regarded as the lack of certain symmetry elements, and 
chirality measures and measures of symmetry deficiency. In three-dimensional chirality, 
special symmetry elements are involved: the presence of  a reflection plane 0 or any 
one of  the rotation-reflections S2n of  even indices renders a set achiral. By analogy 
with chirality, symmetry deficiency and various measures of  symmetry deficiency 
can be defined more generally, for an arbitrary collection of point symmetry elements. 

Consider a family R = {R1, R2 . . . . .  R,,,} of  point symmetry elements. We 
shah use the term R-set for a set U of  an Euclidean space E" if set U has all point 
symmetry elements of  family R. Set V of  an Euclidean space E n is an R-deficient  
subset of  E" if V has none of the point symmetry elements of  family R. Some basic 
properties of R-sets and R-deficient sets are listed in the appendix. 

The R-deficiency index io(C, R) of  a contour C is the smallest nn number  of  
cells at and above which all interior filling animals Ai(C, n) of  C are R-deficient: 

io(C,R)={:  in(nR: all ,4/(C, n) are R-  deficient if n > no}, if the minimum exists, 

otherwise. 
(40) 
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The degree of R-deficiency d(C, R) is defined as 

d(C, R) = 1/(io(C, R) - 1). (41) 

For cell number n = 1, all possible symmetry elements of  animals are present, hence 
io(C, R ) >  1 is always valid for all feasible choices of  set R. This justifies the 
inclusion of  the number 1 in the denominator. 

At level n of  resolution, we define three quantities: 

re(C, R, n) = the minimum number of  cells that must be moved in 
order to turn an interior filling animal Ai(C, n) of  C into 
an animal which is an R-set, (42) 

r(C, R, n) = the minimum number of  cells that must be removed in 
order to turn an interior filling animal Ai(C, n) of  C into 
an animal which is an R-set, (43) 

a(C, R, n) = the minimum number of cells that must be added in order 
to turn an interior filling animal Ai(C, n) of  C into an 
animal which is an R-set. (44) 

Three resolution-dependent R-imperfection measures are given by 

ira(C, R, n) = m(C, R, n)/n, (45) 

ir(C, R, n) = r(C, R, n)/n (46) 
and 

ia(C, R, n) = a(C, R, n)/n. (47) 

Note that if C has no n-cell interior filling animal, then the above six quantities 
re(C; R, n), r(C, R, n) . . . .  ia(C, R, n) are not defined. 

Taking limits as the number of  cells grows to infinity, one obtains the infinite 
resolution ("resolution-independent") R-imperfection measures. These measures are 
related to various areas. 

If a(C) is the area enclosed by the contour C and C'(C, R) is an R-set of  area 
equal to that of  C, obtained from C by minimal deformation as defined by the 
maximaJ overlap measure between C and C'(C, R), then 

lim ira(C, R, n) = (a(C) - a(C n C'(C, R))) / a(C). (48) 
n - , ~ o o  

If M(C) and N(C) are maximal area R-subset and minimal area R-superset, 
respectively, of  the set of  contour C, then 

lim ir(C, R, n) = (a(C) -a(M(C))) / a(C), (49) 
n ---~ oo 

lim ia (C, R, n) = (a(N(C)) - a(C)) / a(C). (50) 
n , - . ~  oo 
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The R-deficiency index io(G, R) of  a contour C and the degree of  R-deficiency 
d(C, R), as well as the definitions of  the resolution-dependent and resolution- 
independent R-imperfection measures can be generalized for the three-dimensional 
case of  bodies and polycubes, or for the case of  abstract, v-dimensional bodies and 
polyhypercubes,  by replacing the terms and symbols of  animal, A, boundary, C, and 
cell with polycube, P, contour surface, G, and cube, or with polyhypercube, P, 
contour hypersurface, G, and hypercube, respectively. 

Appendix 

Take a set T of  the plane such that 

(i) 7" is simply connected, 

(ii) T has a finite area a(T), 

(iii) T has a perimeter P of  finite length p(T), 

(iv) P = P(t) is a parametric curve with 0 < t < 1 such that for t < t', P(t) = P(t') 
if and only if t = 0 and t" = 1. (T is nowhere "infinitely thin". For practical 
purposes, we shall assume that there are no "bottlenecks" in T narrower 
than 2~t2 s' for a small constant s ') .  

DEFINITION A1 

M '  is a maximal achiral subset of  T i f M '  is achiral, M '  c T and if no achiral 
set M "  exists such that M '  c M", M'  # M", and M"  c T. 

Note that M '  is not necessarily unique for a given set T. 

DEFINITION A2 

M is a maximal area achiral subset of  T if M is achiral, M c T and if for all 
maximal achiral subsets M" of  T, a(M') <_ a(M). 

Note that for a given set T, set M is not necessarily unique either; however,  
the area a(M) is a unique number for each T. Evidently, if T is achiral, then M is 
unique and M = T. 

DEFINITION A3 

N '  is a minimal achiral superset of  T if N '  is achiral, T c N" and if no achiral 
set N" exists such that N" c N',  N'  ~: N", and T c N". 

Note that N" is not necessarily unique for a given set T. 

DEFINITION A4 

N is a minimal area achiral superset of  T if N is achiral, T c N and if for all 
minimal achiral supersets N '  of  T, a(N) _~ a(N') .  
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Note that, for a given set T, set N is not necessarily unique either; however, 
the area a(N) is a unique number for each T. Evidently, i f  T is achiral, then N is 
unique and N = T. 

The actual determination of a set M for some chiral set T and the calculation 
of area a(T) are rather difficult problems (see some relevant comments in 
refs. [16-19]). However for the determination of an RBSM and the analogous 
chirality measures given in terms of a discretization procedure using lattice animals 
and polycubes, there is no need to determine a maximal area achiral subset M and 
to calculate its exact area a(M). We shall show that the determination of any upper 
bound a such that 

a(M) < a < a(T)  (A.1) 

is sufficient for our purposes. We may think of the number a as the area a = a(Me) 
of a chiral subset Me of T which contains M. 

As a consequence of restriction (iv), for any chiral T, the relations a(M) < a(T) 
and a(Me) < a(T) hold. That is, the differences 

and 
a" = a(T)  - a(M) > 0 

a"  = a(T)  - a > 0 

are positive. 
Clearly, any interior filling animal Ai(T, n) of T is chiral if 

(A.2) 

(n.3) 

a(Ai(T, n)) > a. (A.4) 

We shall find a large enough n at and beyond which this is guaranteed. 
Define a cell size (length of the side of the square) s '  as 

s ' =  a'7(bp(T)) ,  (A.5) 

where p(T) is the finite length of the perimeter P of T and b > 2~f2. If within T 
there are "bottlenecks" narrower than 2~/2 s' ,  then we replace s' by s ' /2  and repeat 
the test of bottlenecks. 

For any chiral set T, this cell size is positive, s '  > 0. We shall investigate how 
well the set Me is covered by an interior filling animal A of cell size s'. The local 
misalignment of the perimeter P and the lattice directions, the actual placement of 
A within T, as well as narrow foldings of the perimeter may render some areas of 
T near the perimeter inaccessible to animal ceils. All these areas are necessarily 
contained within a belt of width s'2-~[2 along the perimeter, and their total area is 
less than the area of the belt, hence the inaccessible area has an upper bound of 
p(T)s'2~r2.  Consequently, 

a(A) > a(T)  - p(T)s '2~r2 = a(T)  - a"2x/2 / b > a(T)  - a " =  a(Me)  > a(M)  (A.6) 

and any interior filling animal A of cell size s '  or less is chiral. 
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This result evidently provides a constraint in terms of  cell numbers. Take 

n'= int(a(T)/(s') 2) + 1, (A.7) 

then any n-cell interior filling animal Ai(T, n) of  T is chiral if n > n'. 
Consequently, for any chiral set T of  properties ( i ) - ( iv)  there exist finite nc 

numbers at and above which all interior filling animals are chiral, hence there exists 
a unique chirality index nx(T) that is the smallest such nc number. Since for an achiral 
set T one has M = T, no finite nc and nz(T) numbers exist for achiral sets T. 

The above results provide explicit proof of  an assertion in ref. [ 11 ]. They also 
form the basis of  a procedure for the determination of  the chirality index nz(T) of 
actual sets T. Note an important advantage of the discrete technique of  representing 
the set T by n-cell interior filling animals of finite n: for each n value, there are 
only a finite number mn of animals to be tested for chirality and for their occurrence 
as interior filling animals for the given set T. 

Since a(M~) > a(M), hence n '  > nx(T). Consequently, it is possible that with 
a poor choice for n',  more animals must be tested than in the optimal case of 
n '  = n x (T). Note, however, that the possibility of extra tests is more than compensated 
for by the advantage that there is no need for determining M and a(M) precisely, and 
as long as a suitable estimate for a(M~) is available, the lower bound s '  for cell size 
and the upper bound n '  of  (A.7) for the number of cells are valid. By testing at most 
a finite number 

m(n') = ~_~ mn (A.8) 
n=4,n" 

of  animals for chirality and for their occurrence as interior filling animals for the 
given set T, the actual chirality index nz(T ) can be determined. 

Whether an animal A is chiral or not can be easily deduced from its matrix 
representations, as given in ref. [11]. To determine the chirality index nz(T), one 
may follow the procedure below. 

(i) Initialization by setting n = n'+ 1. 
(ii) Set n = n -  1. For each of  the m~ n-cell animals Ai(n), determine the 

maximum cell size si(T , n) compatible with fitting Ai(n ) within T. Denote 
the maximum of  these cell sizes by s(T, n): 

s(T, n) = max {si(T, n)}. (A.9) 
i = l , m  n 

If n =  n' ,  then retum to the beginning of  step (ii). Animal Ai(n ) 
is an n-cell interior filling animal Aj(T, n) of  set T if and only if 
si(T, n) > s(T, n + 1). 

(iii) Test each of  the obtained n-cell interior filling animals for chirality. If 
there is an achiral animal among them, then the chirality index is found, 

no(T) = n + 1, (A.10) 

and the procedure is completed. Otherwise, return to step (ii). 
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In practice, in order to determine whether a given animal A is an interior 
filling animal, the fitting of each animal Ai(n) within T is carried out by some 
approximate method. One may choose a positive grid size factor g, 0 < g < 1, a 
positive angle increment or, and a translation increment f.  Choose a large enough 
initial grid size s such that the animal Ai(n ) certainly does not fit within T. For 
fitting Ai(n) within T, one may follow the steps below: 

(i) Reduce the current grid size by multiplying it by g: set s = gs. Set the 
initial rotation angle as 15 = - tx.  

(ii) Set 13 = 13 + o~. If 13 > 2~, then return to step (i). Rotate T on the square 
grid by angle 13. 

(iii) Generate a sub-grid of  sub-cell size f within a cell size s, and a series 
of  translation vectors vk from a chosen vertex of the cell to each subgrid 
point. Apply each translation vector vk to T and test for each whether 
animal Ai(n) occurs within T. If yes, then we have an approximation 

si(T, n) = s (A.11) 

and the procedure is completed. Otherwise, return to step (ii). 

By choosing factor g closer to 1, and both ct and f closer to 0, one may 
improve the approximation (A. 11) as desired, at the expense of  carrying out a larger 
number of  tests. 

In some cases (e.g. in the case of molecules in an external field), the relative 
orientation of  the objects to one another or to some external direction plays an 
important role. The relative orientations of  the Jordan curves or contours with 
respect to the grid can be fixed, leading to oriented similarity measures and oriented 
symmetry deficiency measures. In such cases, the reorientation step (ii) in the above 
optimization procedure is omitted. 

The analogous 3D method applies to polycubes. A similar treatment applies 
for more general symmetry deficiency problems, and below we list some relevant 
definitions. The generalization of these definitions and properties to any finite n- 
dimensional symmetry problems in an Euclidean space E n is straightforward, by 
considering the symmetry elements in E n and simply replacing area with the n- 
dimensional volume. We shall describe in detail the two-dimensional case, although 
some of  the notations and concepts (e.g. the point symmetry elements S2n) will refer 
to the three-dimensional case. 

Consider a family R = {R1, R2 . . . . .  Rm} of  point symmetry elements. We 
recall from the general text of  this study that an R-set of  an Euclidean space E n is 
a set that has all point symmetry elements of  family R, whereas an R-deficient set 
of  an Euclidean space E n is a set that has none of the point symmetry  elements of  
family R. 
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DEFINITION A5 

Set M" is a maximal R-subset  o f  T if M" is an R-set, M '  c T and if no R- 
set M "  exists such that M" c M", M" ~: M", and M"  c T. 

Note that M '  is not necessarily unique for a given set T. 

DEFINITION A6 

Set M is a maximal area R-subset of  T if M is an R-set, M c T and if for all 
maximal R-subsets M" of  T, a(M') < a(M). 

Note that M is not necessarily unique for a given set T; however,  the area 
a(M) is a unique number for each T. Evidently, if T is an R-set, then M is unique 
and M = T. 

DEFINITION A7 

Set N '  is a minimal R-superset of  T if N '  is an R-set, T c N" and if no R- 
set N"  exists such that N"  c N' ,  N '  ,: N", and T c N". 

Note that N '  is not necessarily unique for a given set T. 

DEFINITION A8 

Set N is a minimal area R-superset o f  T if  N is an R-set, T c N and if for all 
minimal R-supersets N '  o f  T, a(N) < a(N'). 

Note that N is not necessarily unique for a given set T; however,  the area 
a(N) is a unique number for each T. Evidently, if  T is an R-set, then N is unique 
and N= T. 

DEFINITION A9 

Set M '  is a maximal R-deficient subset o f  T if  M '  is an R-deficient  set, 
M ' c  T and if  no R-deficient  set M "  exists such that M ' c  M", M ' ,  M", and 
M" c T .  

Set M '  is not necessarily unique for a given set T. 

DEFINITION A10 

Set M is a maximal area R-deficient  subset of  T if  M is an R-deficient  set, 
M c T and if  for all maximal R-deficient  subsets M '  of  T, the relation a(M') < a(M) 
holds. 

Set M is not necessarily unique for a given set T; however,  the area a(M) is 
a unique number for each T. If  T is an R-deficient  set, then M is unique and M = T. 

DEFINITION A11 

Set N '  is a minimal R-deficient superset o f  T if  N '  is an R-deficient  set, 
T c N '  and if  no R-deficient set N" exists such that N"  c N' ,  N '  ,: N", and T c N". 

Set N '  is not necessarily unique for a given set T. 
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DEFINITION A12 

Set N is a minimal area R-deficient superset of T if N is an R-deficient set, 
T c N and if for all minimal R-deficient supersets N' of T, the relation a(N) < a(N') 
holds. 

Set N is not necessarily unique for a given set T; however, the area a(N) is 
a unique number for each T. If T is an R-deficient set, then N is unique and N = T. 

Note that without further restrictions such as those of polycubes, R-deficiency 
can be achieved by infinitesimal changes. 

For any pair of R-subset M" and R-superset N'  of any set T, the relation 

a(M') < a(N') (A.12) 

holds. Furthermore, 

a(N)-  a(M) < a(N' ) -  a(M') (A.13) 

for any maximal area R-subset M, minimal area R-superset N, R-subset M', and R- 
superset N' of any set T. 

In the 3D case, using the customary notation S2n for rotation-reflection, 
special considerations apply. Note that if the family R contains a symmetry element 
of relection c~ or one of the rotation-reflections S2n of even indices, then the R-sets 
are achiral sets. The various extremal achiral sets can be generated by special R- 
sets which are extremal over all choices of families R containing at least one of the 
above point symmetry elements. If one uses subscripts ot and R in order to distinguish 
achiral sets and R-sets, then for maximum achiral subsets M~ and minimum achiral 
supersets Nh of any given set T, the following holds: 

Set M~ is a maximal achiral subset of T i fM~ c M~, M~ c T, and t~ ~ R or 
Sz~ ~ R for some n > 0 and for some maximal R-subset M~ imply that M~ = M~. 

p P P Set N a is a minimal achiral superset of T if N~t c Na, T c N R, and ~ ~ R or 
S2n E R for some n > 0 and for some minimal R-superset N~ imply that N~ = N~. 

If Ma, MR, Nct and Nr are maximal area achiral subset, maximal area R- 
subset, minimal area achiral superset and minimal area R-superset of a set T, 
respectively, then 

a(Ma) = maxR{a(MR) : MR c T , c ~ R  or S2n ~R for n > 0} (A.14) 
and 

a(Na) = minR{a(NR):TcNR,C~R or $2,, ~R for n > 0}. (A.15) 

In fact, the extremum properties may be stated in terms of general R-subsets M~ 

and R-supersets N~: 

= " "M"'" M~ a(Ma) maxg,M~tat g) c T ,  c ~ R  or S x ~ R  for n > 0 }  (A.16) 
and 

a(Na)=minR,lV¢t{a(N~).TcN~,oeR or S 2 ~ R  for n>0} .  (A.17) 
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All the definitions, concepts and procedures listed in this appendix have  
straightforward generalizations for any finite dimension n. In this context, we must 
emphasize that chirality is obviously dimension dependent. If a given object is 
achiral when embedded in a space of  k-dimensions, it may be chiral if embedded 
in a space of  some different dimensions. We shall use the following notations: E n + 1 
is an (n + 1)-dimensional Euclidean space and E ~ is an n-dimensional subspace of  
E n + 1. If we refer to the n-dimensional chirality of  an object A, then we consider 
its embedding in an Euclidean space E n and reflections as well as all motions 
are restricted to this space. Here, we present a simple proof of  the following 
result: 

Any object A that is chiral in n-dimensions is achiral in (n + 1)-dimensions 
and in any higher dimensions. Chirality may occur only if the lowest dimension A 
is embeddable. 

P r o o f  

Object A is chiral in n-dimensions (that is, when embedded in En). Let us 
denote,the mirror image of  A by A ° and the corresponding mirror image of  point 
p ~ A by pO. By translations and rotation, we can always arrange A and A ° in E n 
so that for all their point pairs p and p0 their coordinates fulfill the relations 

P~ = - P l ,  (A.18) 

P~ = Pi (i = 2, 3 . . . . .  n). (A.19) 

For this arrangement, the (n-  1)-dimensional reflection hyperplane E n- 1 in E n is 
defined by 

xl = 0, (A.20) 

where xl is the first coordinate of  a point x E E n. 
Consider now the same arrangement of A and A ° embedded in E n+ 1, by 

regarding E n as a subspace of  E n + i. A two-dimensional rotation in E n + 1 is defined 
by its ( n -  D-dimensional  axis and by the angle of  rotation in the remaining two 
dimensions. Note that in a k-dimensional space, the axis of  rotation is ( k - 2 ) -  
dimensional. Choose the rotation axis in E n +1 as the ( n -  1)-dimensional subset 
defined as the reflection hyperplane E n- 1 of  condition xl = 0 in E n. With respect 
to this axis, a rotation of  angle e~= n in the two-dimensional plane spanned by 
coordinates (xl, xn+ 1) superimposes A on A ° in (n + 1)-dimensions. Consequently, 
the object A is achiral in (n + 1)-dimensions (that is, when embedded in E n+ 1). 
Furthermore, the superimposition of mirror images performed in E n+~ is a possible 
motion in any Euclidean space E n + k, k > 1, of  which E n + 1 is a subspace, hence A 
is achiral in any higher dimensions. Consequently, chirality may occur only in the 
lowest dimension where A is embeddable. [] 
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